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Here we prove that the algorithm given in Gaṇitakaumudī [1] , GK 14.10, 14.11-a
indeed generates all 4× 4 pandiagonal magic squares. The most frequent magic squares
are those filled with the natural numbers 1, 2, · · · , 16. However the text does contain
examples of squares containing non-consecutive integers, more precisely those with 4
arithmetic progressions, P1, · · · , P4 where Pt = {at+kd, k = 0, 1, 2, 3} with at as the first
term and d the common difference and the condition that a1+a4 = a2+a3. There are also
occurrences of the form {ai, ai + d1, ai + d1 + d2, ai + 2d1 + d2} , for instance GK.14.15p,
which are called generalised arithmetic progressions in contemporary language. The
generic series is the one with a1 = 1, a2 = 5, a3 = 9, a4 = 13, d1 = d2 = 1 and is
enough to understand the construction . The cells are filled with consecutive elements
of the progressions using well-defined movements . While filling the square it is to be
understood that the square folds on itself like a torus, i.e. all placements are modulo 4.
We have numbered the cells as that of a matrix.

The possible movements from the (i, j)th cell are :

1. The movement, termed turaga-gati, of a horse as in chess, which is a displacement
of two columns (rows) and one row (column) reaches the position (i± 1, j + 2) or
(i + 2, j ± 1). The first two are called descending and ascending horse movements
and the last two are named right and left. We will use the letters D,A,R and L
for them.

2. A diagonal move that consists of a displacement of one place on both the row and
column reaching (i ± 1, j ± 1). The directions descending-right, .., ascending-left
will be denoted by δρ (or ρδ), δλ, αρ, αλ .

3. An adjacent move is one step exclusively on a row (or column) and noted by
a, d, r, l.

4. A vertical (respectively horizontal) move is two steps along a row (respectively
column).

5. An antipodal move comprises two steps on one of the eight diagonals ending at the
(i+ 2, j + 2)th cell. Two such diametrically opposed elements are called antipodes.
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The movements 1, 2 and 4 are mentioned explicitly in GK.14.10. The term antipodal
is used by Rosser and Walker [2] and can be identified in arabic texts on magic squares
as fīl ( to designate the bishop of chess).

Each of the four progressions Pt , termed pada for step, is placed in the square
using a sequence of three movements horse-diagonal-horse containing two identical horse
movements. The whole step has what we will call, a sense that is identical to that of
the horse movement since the intervening diagonal follows the same direction as that
of the horse. Thus the sequence of moves LαλL and LδλL are both of the left sense
while the sense of the sequence AλαA is ascending. The first and second and again
third and fourth progression of numbers are linked by an adjacent move while between
P2 and P3 the movement is antipodal. We notice that the constructions involving the
horizontal and vertical movements can also be seen as horse-diagonal-horse movements
by considering a different arrangement of the progressions, for example, for the generic
case with d = 2, a1 = 1, a2 = 2, a3 = 9, a4 = 10.

Corresponding to a movement from any (i, j) to (i+m, j + n) there exists an unique
inverse movement that takes any (i, j) to (i−m, j−n). For example the right horse and
the left horse are inverse movements of each other and when applied twice successively
come back to the starting point. Similarly the δρ diagonal move has αλ as its inverse.

The constant sum of the elements of rows, columns and the 8 diagonals (2 principal
and 6 broken), called the magic sum is denoted by S.
Theorem 1. Nārāyaṇa Paṇḍita ’s algorithm generates 4× 4 pandiagonal magic squares.
Proof. The elements of any progression are placed using the sequence of movements horse-
diagonal-horse, hence they are all on different rows and columns . Depending on the sense
of this sequence of moves, there is a shift of three rows ( or columns) and one column
(respectively row) between the beginning and end of the step. For instance beginning at
(i, j) using two right horse movements one would reach ((i+2)+2, (j+1)+1) = (i, j+3)
The diagonal move employed would be necessarily to the right . So the cell finally reached
would be (i± 1, j+3) depending on whether the diagonal move is δρ or αρ . In the same
way any chosen sense starting at (i, j) ends diagonally at (i ± 1, j ± 1). In particular
for the generic case, 4 is diagonal to 1. By construction 5 is placed adjacent to 4 but
on a row and column different from 1. Therefore the adjacency can not be again in the
sense of the placement of P1. Thus the RδρR moves above could be followed by placing
5 with a left movement bringing it to (i + 1, j + 2). Now the placement of P2 using
RαρR brings the element 8 to (i, j+1). A down movement to place 5 would terminate at
(i+ 2, j − 1). This time P2 following LδλL brings the element 8 to or (i− 1, j). Thus by
construction 5,6,7 and 8 which are themselves on different rows and columns are also on
different rows and columns from 1,2,3 and 4 respectively and 8 is always adjacent to 1.
Now 9 which is antipodal to 8 by construction begins at a row and column different from
both 1 and 5 and 13 does the same. Thus each row and column of the square contains
exactly one element of a different position of the four progressions . This constant sum
is S = a1 + a2 + a3 + a4 + d(0 + 1 + 2 + 3) = 2(a1 + a4) + 6d and for example for the
generic case we get the desired S = 34.
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Since the movements used to place P3 and P4 are inverses of P2 and P1 respectively and
P2 and P3 are connected by an antipodal movement the elements at+kd and a5−t+(3−k)d
for k = 0, 1, 2, 3 and t = 1, 2, 3, 4 are in antipodal positions. So a pair of antipodes sum
up to at + a5−t + 3d which is exactly S/2.

Since any diagonal, main or broken, contains two pairs of antipodal elements, the
sum of its elements is S.

To show that this algorithm generate all pan-diagonal magic squares we use the two
following properties .

Lemma 1. In a 4 × 4 pan-diagonal magic square the antipodal elements always add up
to half the magic sum.

Proof. Other than being part of a row and a column every element shares the two di-
agonals containing it with its antipode. Thus there are six distinct cases involving at
least one of a pair of antipodal elements where the constant sum of the magic square
is attained with the antipodal elements each occurring at the intersection of four cases.
The other 18 summands of these six cases include another pair of antipodal elements
which are again constituants of a pair of common diagonals which use up 10 summands.
Now there are two more diagonals which exactly cover all elements of the initial six cases.
The initial sum of elements is 6S and if we substract 4S, the sum of the elements in the
four diagonals above, only the antipodal elements remain with a multiplicity of 4.

In Figure 1 there are six blue lines passing through x or y . The other cells covered by
the blue lines are taken care of by the four green diagonals. The simultaneous presence
of a green and a blue line in a cell annules the element of the cell and only the antipodes
x and y remain at the intersection of 4 blue lines each. Thus 6S − 4S = 2S = 4(x+ y).
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Figure 1: Sum of Antipodes

Lemma 2. In a 4× 4 pan-diagonal magic square the sum of elements contained in 2× 2
squares obtained with adjacent cells is the magic sum . This is also true for such 2 × 2
squares obtained by folding.
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Proof. The two rows and columns containing the elements that form a sub-square of
adjacent elements also contain elements that belong to exactly two diagonals. The sum
of the latter is 2S which subtracted from the former, 4S, leaves twice the sum of elements
of the 2× 2 square.
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Figure 2: Sum of 2× 2 squares

In the above example 2(x+ u+ z + v) = 4S − 2S = 2S

We denote by x′ the antipode of x. It is sometimes convenient to use two sets I =
{x1, · · · , x8} with the initial 8 elements that fill the magic square and A = {x′1, · · · , x′8}
the set of their antipodes.

Corollary 1. In a 4×4 pan-diagonal magic square two elements can be placed diagonally,
vertically or horizontally only if their sum can be expressed as the sum of two admissible
elements of the magic square in at least two different ways. For elements to be adjacent
at least four different representations must exist.

Proof. For any 4 elements, say x, y, z′, w′ that form a 2× 2 square of adjacent cells their
antipodes also form a similar square (Figure 3). Now if x,w′ are the diagonal elements
of the first square, then y′, z are diagonals of the second one and the sums are identical
since x+w′ = S−(y+z′) = S/2−y+S/2−z′ = y′+z . Similarly if x, u are vertical then
the antipodes of the other two elements of the column s, z are also vertictal elements and
have the same sum.

A pair of adjacent elements , say in a row, belong simultaneously to two 2×2 overlap-
ping squares and one row. When their sum is removed from S we get three representations
for the sum of the other pair of adjacent elements present in the row. This last pair is
again present in two overlapping squares which gives a fourth representation of the same
sum.

Corollary 2. Every row, every column and every 2 × 2 square of adjacent cells of a
pan diagonal magic square contains exactly two elements of I and two from A. If these
elements are x, y, w′, z′ then x+ y = w + z.
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Figure 3

Proof. Clearly four elements all chosen from I or A do not give the magic sum. If a
row or column is filled with exactly three elements of I we are left with equalities of the
form a + b′ = c + d = e + f = g + h with all summands but b′ belonging to I. Now
a+ b′ ≥ 10 and since this sum must also be split in three distinct ways in I, c+ d ≤ 11 .
Now since 10 ≤ a+ b′ ≤ 11 the only choices of b are 8 and 9 both of which occur in the
3 decompositions of 10 or 11. Thus exactly two elements from each set are necessary for
filling a row, column or 2× 2 square of adjacent elements.

In fact up to permutations of rows and columns a generic pan-diagonal magic square
is of the type

a b c′ d′

e′ f ′ g h
c d a′ b′

g′ h′ e f
with a+ b = g + h = c+ d = e+ f = 9 and a+ e′ = d+ h′.

Theorem 2. Nārāyaṇa Paṇḍita ’s algorithm generates all 4 × 4 pan-diagonal magic
squares.

Proof. Let us place 1 at the top left hand corner. Now 2 can not be diagonal,vertical or
adjacent by Corollary 1.Therefore 2 is at a horse movement away from 1. By the same
argument 1 and 3 are horse positions away. The possible horse positions from (i,j) are
(i± 1, j + 2), (i+ 2, j ± 1). Thus if 2 is at one of these positions , say (i+ 1, j + 2) then
3 is either diagonal from 2 , i.e. (i+ 2, j ± 1) or at a vertical move away (i-1, j+2).

1
2

3 3
3

��� These are the two positions mentioned explicitly as aikya ekāntara. Once 1, 2 and 3 are
fixed, their antipodes are as well and hence the only possibility for the square containing
2 and 3, if they are diagonal, are 16 and 13. The antipode of 13, i.e. 4, is thus at the
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same horse movement from 3 as 2 is from 1, i.e. at (i+ 2 + 1, j + 2 + 1) = (i− 1, j − 1)
which is on a diagonal containing 1. Continuing with the above example and choosing 3
to be the left diagonal movement,

1
4′ 2
3 1′

4
In case 2 and 3 are vertical/horizontal this column/row must contain 13 and hence the
position of 4 is determined uniquely. We do not treat this case in detail because it can
as well be considered as a horse-diagonal-horse movement by using another progression
{1, 3, 5, 7}. . Now 1,2,3 and 4 are all on different rows and columns. The next element in
the sequence 5 can not be reached from 4 by a horse movement since the only available
places are adjacent to 1 and this is not possible by Corollary 1. If 4 and 5 were diagonal,
vertical or horizontal, 5 would be adjacent to 2 or 3 which would similarly be incoherent.
Hence 5 takes up one of the available cells adjacent to 4.

Once five elements and therefore their antipodes are fixed, three elements of four
unfilled lines are known ( 5 is placed to the left of 4 in our example) and therefore the
fourth is determined uniquely.

1 3′

5′ 4′ 2
3 1′

2′ 5 4
Even without actually working out the missing fourth element it can be seen for

instance that in the above example 6 which is never adjacent to 1 or 2 can further not
fill a 2 × 2 square already containing two elements of I ( Corollary 2) and must only
be at that horse position from 5 as 4 is from 3. The same argument places 7 diagonally
up and left from 6 and 8 follows by a up-horse movement. Now its antipode is fixed.
We notice that the antipodes must indeed follow the inverse movements, for if x at the
(i, j)th position is moved to y at (i+m, j + n) then y′ of the (i+m+ 2, j + n+ 2)th cell
by the inverse movement goes to (i+m+ 2−m, j + n+ 2− n), i.e. x′.

Remark 1. In contemporary language we would say that the group of 4× 4 pan-diagonal
magic squares is isomorphic to the Coxeter-Weyl group of W (B4).
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