Sommaire

Introduction	
Chapitre 1. Les grands problèmes de l'Antiquité	
Le problème impossible	
Un problème grec avec oracle et tutti quanti	
Un autre problème antique, sans oracle et sans solution	
Le théorème originel	
Il existe une infinité de nombres premiers	
Les nombres parfaits	
La sphère et le cylindre	
La merveilleuse cycloïde	
Pourquoi les alvéoles d'abeilles sont-elles hexagonales ?	
Kepler et les oranges	
Chapitre 2. Un arrêt à la station Leonhard Euler	
Le problème qui n'intéressait pas Sherlock Holmes	
Le problème de Bâle	
La conjecture de Goldbach	
Le problème à trois corps	
La conjecture de Legendre	
Une brique introuvable	
Les ponts de Königsberg	
Un génie de 19 ans	
À la recherche de l'équation perdue	
Le théorème des nombres premiers	
Et le défilé ne s'arrête pas là	
Chapitre 3. Les mathématiques accèdent à l'âge adulte	
La conjecture la plus célèbre	
Mort d'un commis voyageur	
Quatre couleurs suffisent	
Premiers par paire	

SOMMAIRE

La conjecture de Bieberbach	9
La conjecture des 100 000	9
Les mathématiques ont-elles scié leur propre branche?	10
La conjecture de Tait	10
La conjecture de Catalan	10
Le problème des carrés magiques premiers	10
Un dernier pour la route	10
Chapitre 4. Les 23 problèmes de Hilbert	10
H1. Hypothèse du continu	10
H2. Consistance des axiomes de l'arithmétique	11
H3. Polyèdres de même volume	11
H4. Lignes droites comme géodésiques	11
H5. Groupes de Lie	11
H6. Axiomatisation de la physique	11
H7. Irrationalité et transcendance	12
H8. Hypothèse de Riemann et nombres premiers	12
H9. Réciprocité quadratique généralisée	
H10. Équations diophantiennes	12
H11. Formes quadratiques	12
H12. Extensions abéliennes	
H13. Fonctions de deux variables	13
H14. Invariants et génération finie	13
H15. Géométrie énumérative et calcul de Schubert	13
H16. Courbes planes et cycles limites	13
H17. Fonctions positives	13
H18. Groupes cristallographiques et pavages polyédraux	13
H19. Solutions analytiques	13
H20. Conditions au bord	13
H21. Monodromie prescrite	13
H22. Uniformisation	14
H23. Calcul des variations	14
Chapitre 5. Les sept problèmes du millénaire	14
C1. Hypothèse de Riemann	14
C2 Conjecture de Birch et Swinnerton-Dyer	15

SOMMAIRE

C3. P versus NP	152
C4. Conjecture de Poincaré	155
C5. Conjecture de Hodge	157
C6. Théorie de Yang-Mills	158
C7. Équations de Navier-Stokes	159
Une petite comparaison pour conclure	160
Chapitre 6. Sept grands problèmes élémentaires	161
E1. Conjecture 3 <i>n</i> + 1 ou de Syracuse	161
E2. Nombres premiers de la forme $x^2 + 1$	162
E3. Nombres parfaits impairs	163
E4. Conjecture de Hadamard	164
E5. Paires de Golay	165
E6. Arbres gracieux	167
E7. Théorème des quatre couleurs	168
Épilogue	171
Bibliographie	173
Inday analytique	175