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Notations

For all lower bound, we suppose that n is big enough.
n — # balls

d — dimension
k — each point of the plane is covered by at most
k balls
Cyq(n, k) — minimal # of colors needed to colour the
balls, when Alice plays as she wishes
C4(n, k) — all balls have the same radius
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Lemma

CS(n, k) < 2k — 1

k—1{ = = }k-1
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Lemma

Ci(n, k) > k+1
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C]_(n,k) >k+1
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Lemma

C]_(n,k) >k+1
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Lemma

5k—1
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Cz(n, 2) >4
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Four-colors theorem

The vertices of every planar graph can be colored with at most
four colors so that no two adjacent vertices receive the same color.

{ C2(n72) 2 4 = CQ(”,2) — 4*

Cz(n, 2) <4

*Supposing that Alice places all her circles, and then Bob:colours them
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d=2
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One disc intersects at most 7k — 1 other discs. (Generalization of
shortlist IMO 2003)
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Theorem

One disc intersects at most 7k — 1 other discs. (Generalization of
shortlist IMO 2003)

Corollary

Cs(n, k) < Tk
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Complete graph for n =7

k
CZ(na k) > %

A complete graph is a graph in which every pair of distinct vertices
is connected by a unique edge.
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Ca(n k) > k+d

Lemma

Ca(n, k) (d+2)
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A simplex is a
generalization of the
notion of a triangle or
tetrahedron to arbitrary
dimensions
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Lemma

cS(n, k) < 39%
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Lemma

lim Cq(n, k) =

d—+o00
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Summary

Ccf(nk) < 2k-—-1

CS(n k) < Tk

cS(n k) < 39k
k+1 < Ci(n k)
k+2 < Co(n, k)
k+d < Cq(n k)
# < Cl(n’k)
% S CZ(nak)
5(d+2) < Caln,k)

Thank you for your attention (%) !
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